If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+18x+37=0
a = 1; b = 18; c = +37;
Δ = b2-4ac
Δ = 182-4·1·37
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{11}}{2*1}=\frac{-18-4\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{11}}{2*1}=\frac{-18+4\sqrt{11}}{2} $
| P(x)=5(5-x)+5x | | 5/12t+3+1/3t=t-21 | | (x+9)^2=44 | | (x+9)^2-44=0 | | 120=5(x-70)+45 | | (2x-3)^3(x^2-9)^2+(2x-3)^5(x^2-9)=0 | | 9(y+5)=5y+21 | | 2x^2+18x+37=0 | | -5x-47=-7(x+5) | | 2(v+4)=4v-8 | | -1x^2+(x+4)^2=16 | | x=8x-72 | | 3x^-2x+11=0 | | 37u+5u^2=24 | | -81(-8x-6)=-6x-22 | | (X+4)^2=x^2+4^2 | | 2^n=10n^2 | | (y+3)(y+5)=0 | | −5(2x−21)=2(x−6)−3 | | 3(3-2x)=5x-6+2x | | 17+2-2p+6=3p | | |9d+4|=0 | | 3x-32=-7x+×8 | | x-8+5=x-8+5 | | 7(x^2-6x+9)=5(x-3) | | 3x-32=-7x×28 | | x+9/7=10 | | 5(k-5)-(4k-6)=1 | | X/4+5x=1/3 | | -(3/4x)-7=2 | | (4/y)-(5/2y)=5 | | 3.2^x=(0.2)^-x |